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Powerful, Simple, and Efficient Ensemble Data Assimilation:
Beyond the Kalman Filter

Jeffrey L. Anderson

I. A simple framework for ensemble filtering assimilation

II. Examples of ensemble filtering algorithms
A. Perturbed Observation Ensemble Kalman Filter
B. Ensemble Adjustment Kalman Filter
C. Quadrature Kernel Filters

III. Ensembles for quality control of observations

IV. Examples of abilities of Ensemble Adjustment Kalman Filter
A. Comparison to adjoint methods in low order model
B. Application in global PE ‘NWP’ model
C. Difficult assimilation: global PE model, surface pressure observations only

V. Bias, bias, everywhere...

VI. Future plans
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Nonlinear Filtering

Dynamical system governed by (stochastic) DE

(1)

Observations at discrete times

(2)

Observational error is white in time and Gaussian

(3)

Complete history of observations is

(4)

Goal: Find probability distribution for state at time t

(5)
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Filtering in Joint State/Observation Space

Define joint state/observation vector at time t as zt = {xt, ht(xt, t)} = {x, y}

Vector of length n + m: m is size of the observational set yo available at time t
n is size of model

State between observation times is obtained from DE (1):

Need to update given new observations at time t:

Define prior joint state: p(zp) = p(zt | Yt-1)

updated (posterior) joint state: p(zu) = p(zt | Yt)

p(zu) = p(zp | yo
t) .

Applying Bayes’ rule and fact that observational error is white in time gives:

p(zu) = p(yo | zp) p(zp) / (normalization) (6)

(drop subscript t from here on)

Can now apply filter directly to arbitrary (non-linear) observation operators

Observations yo are related to the joint state variables by simple linear operator H

x1, x2, ..., xn y1, y2, ...ym

State Observation

Joint

h

Expected Value of Observations

h

non-linear

H

Linear
H = 0 I

m x n m x m
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Sequential Assimilation of Observations

p(a, b | c) = p(a | c) p(b | c) if a and b are independent

Divide observations at given time into s subsets

yo = {yo
1, yo

2, ...yo
s}

Observational errors for obs. in different subsets independent

First term in numerator equation(6):

Can assimilate subsets sequentially in arbitrary order

Gaussian observation errors, subsets have no cross-covariance

p y
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Sequential Assimilation of Observations (cont.)

Assume observational system gives errors as Gaussian, mean 0

Observational error covariance matrix is R

Do Singular Value Decomposition (SVD) so that

R’ = FTRF

where F is unitary.

This is rotation to frame where R is diagonal

Can redefine forward observation operator as h’ = FTh

In this frame, all observations have independent error

Only changes definition of observation part of joint space

From now on...
Assimilate single scalar observation without loss of generality

(number of obs. m = 1,     size of joint space k = n + 1)
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Ensemble Filtering

Goal: Obtain as much ‘information’ as possible about p(x)

Assimilation (fusion) process: p(zu) = p(yo | zp) p(zp) / (norm)

Input:
Observations - unbiased with Gaussian observational error
(Can be easily generalized to sum of Gaussians)

Model: ‘Ensemble’ sample of model prior state distribution

Output:
‘Ensemble sample of model updated (posterior) distribution

t
yo

x2

x3

x1

Assimilation
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Two Step Ensemble Data Assimilation

Step 1: Update marginal distribution for observation variable

py(yu) = p(yo | yp) py(yp) / (norm)

Subscript y is marginal distribution on observation variable

Can update y independently of all other variables

Details on y update methods (step 1) later

Result is set of increments for ensemble estimates of y

yu
i = yp

i + yi

i = 1, ..., N N is ensemble size
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Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state
variable ensembles

Simple idea: Do linear regression of xp on yp

Equivalent to doing: Least squares fit
Assuming Gaussian prior relation

(Doing previously documented ensemble Kalman filters)

Example 1: Observation variable direct function of state variable

*

*

*
*

*
*

++++++

+

+
+
+

+
+

+

y

x

Observation

y5

y1

x1 x5

Least Squares Fit
(Regression of
x on y)

Sometimes called
Statistical Linearization

* is prior ensemble sample

y=h(x)
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Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state variables

Idea: Do linear regression of xp on yp

Could also do local linearizations:
(Related to Gaussian Kernel approximation)

Works well in cases where state and obs are functionally related

*

*

*
*

*
*

++++++

+

+
+
+

+
+

+

y

x

Observation

y5

y1

x1 x5

* is prior ensemble sample

y=h(x)
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Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state variables

More challenging when obs and state are not functionally related

Example: y = h(x2), x and x2 strongly correlated

Large sample size needed to ‘remove’ noise
Trade-offs with local linearization (dotted magenta)

*
*

* *

**

++++++

+
+

++

++

+

y

x

Observation

y5

y1

x1 x5

* is prior ensemble sample

y=h(x)

Least Squares Fit
(Regression of
x on y)



/net/jla/assim/theory_paper/slides.fm June 13, 2001 9:24 am

Details of Step 1: Updating Observation Variable Ensemble

Scalar Problem: Wide variety of options available and affordable

Begin with two previously documented methods:

1. Perturbed Observation Ensemble Kalman Filter

2. Ensemble Adjustment Kalman Filter
__________________________________________

Both make use of following (key to Kalman filter...)

Given prior ensemble with sample mean zp and covariance p

Observation yo with observational error variance matrix R

Note: Product of Gaussians is Gaussian

(9)

and mean:

(10)

u p 1–
H

T
R 1– H+

1–
=
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u u p 1–

z
p

HT R 1– y
o+=



/net/jla/assim/theory_paper/slides.fm June 13, 2001 9:24 am

Details of Step 1: Perturbed Obs. Ensemble Kalman Filter

1. Compute prior sample variance and mean, p and zp

2. Apply (9) once to compute updated covariance, u

3. Create an N-member random sample of observation

distribution by adding samples of obs. error to yo

4. Apply (10) N times to compute updated ensemble members

Replace zp with value from prior ensemble, yp
i

Replace yo with value from random sample, yo
i

Updated ensemble value is yu
i (= zu from 10)

NOTE: When combined with linear regression for step 2, this
gives identical results to EnKF’s described in literature!

* * ***

*** * *

* * ** *

Observation

Prior

Updated (Posterior)

(4th prior sample
paired with 3rd
obs. sample for
product)

yo
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Details of Step 1: Ensemble Adjustment Kalman Filter

1. Compute prior sample variance and mean, p and zp

2. Apply (9) once to compute updated covariance, u

3. Apply (10) to compute updated mean, zu

4. Adjust prior ensemble of y so that mean and variance are

exactly zu and u

,   i = 1, ... N

 is variance of y
Similar methods called square root filters (for obvious reasons)

yi
u

yi
p

y
p

–
u p⁄ y

u
+=

** * **

* ** *

Observation

Prior

Updated (Posterior)

*

* * ***

Product

Adjust
Mean

Adjust
Variance
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Details of Step 1: Quadrature kernel filter

1. Compute prior sample variance p

2. Use a Gaussian (or other) kernel approximation to get

continuous approximation to p(yp)

3. Use quadrature to take product in (6) directly
Can do  individual Gaussians kernels if Gaussian

p(zu) = p(yo | zp) p(zp) / (normalization)

4. Create an N-member random sample of p(zu)

5. An interesting variant uses boxcar kernels

6. Only useful for non-Gaussian structure in prior;
very powerful for Lorenz-63 model

* * * * *

* * ** *

Observation

Prior

Updated (Posterior)
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Limiting the Impact of Observations

Only letting each observation impact subset of state vars in
step 2 regression is often advantageous

1. Reduces computational cost

2. Avoids problems due to spurious remote correlations
(Especially problematic for small ensembles, large state)
(Hamill et al., 2001)

3. Avoids singularity problems from small sample sizes
(gives updates in more than n -1 directions)
This is crucial in realistic models with bias

Extremely straightforward in two step filter context
Just multiply covariance in regression by a distance-

dependent factor
Close observations have full impact
Remote observations have no impact
Could rephrase this argument in terms of expected

inter-relatedness as opposed to distance
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Quality Control of Observations

Methods to exclude erroneous observations

1. Discard impossible values (negative R.H.)

2. Discard values greatly outside climatological range

3. Discard values that are more than  prior ensemble sample
standard deviations away from prior ensemble mean

4. ‘Buddy’ checks for pairs of observations: just apply chi-square
test using prior ensemble covariance and label pair as inconsis-
tent if threshold value exceeded

5. Could also apply chi-square to larger groups of obs.

y1

y2

*

*
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Comparison to Adjoint: Computational Cost and Implementation

1. Model integrations
a. Filter requires N forward integrations of model; O(10) sufficient?
b. Adjoint requires K*L forward and backward integrations

K - number of observation intervals over which optimization is performed
L - average number of iterations of minimization solver
K*L at least O(10) for any envisioned application

2. Assimilation algorithm cost
a. Filter: O( Nnm) :N is ensemble size, n is model size, m is number of obs

 related to what fraction of state variables are impacted by given ob.
In certain scenarios this may reduce order of cost

b. Adjoint: O(nm) in best of all possible cases
Relation of constant factors not clear, depends on ensemble size

3. Ease of implementation
a. Filter-needs no model specific software
b. Adjoint-requires exact adjoint model plus linear tangent (can be a pain)

4. Ability to deal with model imperfection
a. Filter-single parameter adjusts relative confidence of prior / obs.

Easy model parameter assimilation may help introduce noise
b. Adjoint-additional difficulties to implement model as weak constraint

Addition of model noise very tricky without ensemble information

5. Information produced
a. Filter gives information on mean and distribution
b. Adjoint gives information on ‘mean’

6. Adjoint can be extended in a number of ways...
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Ensemble Filter Results in Global PE Models

PE models components of GFDL’s Flexible Modeling System

B-grid dynamical core by Bruce Wyman

B-grid model incorporated for filter by Shaoqing Zhang

Global GCM results by Shaoqing Zhang
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Global B-grid General Circulation Model

Dynamical Core (Distant cousin of NCEP ETA model):
Global B-grid

/p hybrid vertical coordinate
Prognostic equations:

Momentum (u & v)
Temperature (T)
Specific Humidity (q)
Surface Pressure (ps)

Resolution: 90 longitudes, 60 latitudes, 18 levels (N30L18)
(n = 486,000)

Parameterizations:
Long- and short-wave radiation (Fels-Schwarzkopf)
Moist convective adjustment and large-scale condensation
Mellor-Yamada 2.5 vertical turbulence
Stern-Pierrehumbert gravity wave drag
Simple land surface with bucket hydrology

Observational network:
600 column observations distributed randomly on sphere
Quantities observed on models vertical levels
Synthetic observations taken from perfect model control
Observations every 12 hours
Obs. error standard deviation 1C, 1m/s, 100hPa
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Ongoing Work

1. Explore methods for dealing with model systematic error in
mean and covariance

2. Explore implications for initialization in intermediate models

3. Explore targeted observation methodology (Shree Khare)

4. Implement ensemble adjustment filter in MOM ocean model
for SI prediction (Shaoqing Zhang)

5. A variety of fun OSSEs? More on use of surface obs.

Future Plans:

Explore applications in atmospheric ensemble prediction
systems

Examine evolving stochastic parameterizations, tuning
parameterizations with ensemble assimilation

Incorporate into experimental data assimilation test-bed to be
developed at NCAR in collaboration with OAR


